Copied to
clipboard

G = C42.162D6order 192 = 26·3

162nd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.162D6, C6.1012- 1+4, C4⋊C4.213D6, C422C25S3, C422S37C2, D6⋊Q844C2, (C4×Dic6)⋊15C2, C22⋊C4.80D6, D6.27(C4○D4), Dic3.Q838C2, (C4×C12).34C22, (C2×C6).252C24, C2.65(Q8○D12), C4.Dic640C2, C23.9D6.4C2, (C2×C12).604C23, D6⋊C4.140C22, Dic34D4.5C2, C23.8D646C2, C23.68(C22×S3), (C22×C6).66C23, Dic3.32(C4○D4), Dic3.D446C2, C23.16D622C2, C4⋊Dic3.247C22, C22.273(S3×C23), Dic3⋊C4.146C22, (C22×S3).226C23, (C2×Dic6).255C22, (C2×Dic3).130C23, (C4×Dic3).218C22, C6.D4.68C22, C311(C22.46C24), (C22×Dic3).152C22, (S3×C4⋊C4)⋊42C2, C4⋊C47S341C2, C2.99(S3×C4○D4), C6.210(C2×C4○D4), (C3×C422C2)⋊7C2, (S3×C2×C4).220C22, (C2×C4).88(C22×S3), (C3×C4⋊C4).204C22, (C2×C3⋊D4).72C22, (C3×C22⋊C4).77C22, SmallGroup(192,1267)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.162D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.162D6
C3C2×C6 — C42.162D6
C1C22C422C2

Generators and relations for C42.162D6
 G = < a,b,c,d | a4=b4=1, c6=d2=b2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c5 >

Subgroups: 480 in 214 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C42.C2, C422C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C22.46C24, C4×Dic6, C422S3, C23.16D6, Dic3.D4, C23.8D6, Dic34D4, C23.9D6, Dic3.Q8, C4.Dic6, S3×C4⋊C4, C4⋊C47S3, D6⋊Q8, C3×C422C2, C42.162D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, S3×C23, C22.46C24, S3×C4○D4, Q8○D12, C42.162D6

Smallest permutation representation of C42.162D6
On 96 points
Generators in S96
(1 23 43 73)(2 18 44 80)(3 13 45 75)(4 20 46 82)(5 15 47 77)(6 22 48 84)(7 17 37 79)(8 24 38 74)(9 19 39 81)(10 14 40 76)(11 21 41 83)(12 16 42 78)(25 51 92 66)(26 58 93 61)(27 53 94 68)(28 60 95 63)(29 55 96 70)(30 50 85 65)(31 57 86 72)(32 52 87 67)(33 59 88 62)(34 54 89 69)(35 49 90 64)(36 56 91 71)
(1 49 7 55)(2 71 8 65)(3 51 9 57)(4 61 10 67)(5 53 11 59)(6 63 12 69)(13 92 19 86)(14 32 20 26)(15 94 21 88)(16 34 22 28)(17 96 23 90)(18 36 24 30)(25 81 31 75)(27 83 33 77)(29 73 35 79)(37 70 43 64)(38 50 44 56)(39 72 45 66)(40 52 46 58)(41 62 47 68)(42 54 48 60)(74 85 80 91)(76 87 82 93)(78 89 84 95)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 14 19 20)(15 24 21 18)(16 17 22 23)(25 93 31 87)(26 86 32 92)(27 91 33 85)(28 96 34 90)(29 89 35 95)(30 94 36 88)(37 42 43 48)(38 47 44 41)(39 40 45 46)(49 69 55 63)(50 62 56 68)(51 67 57 61)(52 72 58 66)(53 65 59 71)(54 70 60 64)(73 78 79 84)(74 83 80 77)(75 76 81 82)

G:=sub<Sym(96)| (1,23,43,73)(2,18,44,80)(3,13,45,75)(4,20,46,82)(5,15,47,77)(6,22,48,84)(7,17,37,79)(8,24,38,74)(9,19,39,81)(10,14,40,76)(11,21,41,83)(12,16,42,78)(25,51,92,66)(26,58,93,61)(27,53,94,68)(28,60,95,63)(29,55,96,70)(30,50,85,65)(31,57,86,72)(32,52,87,67)(33,59,88,62)(34,54,89,69)(35,49,90,64)(36,56,91,71), (1,49,7,55)(2,71,8,65)(3,51,9,57)(4,61,10,67)(5,53,11,59)(6,63,12,69)(13,92,19,86)(14,32,20,26)(15,94,21,88)(16,34,22,28)(17,96,23,90)(18,36,24,30)(25,81,31,75)(27,83,33,77)(29,73,35,79)(37,70,43,64)(38,50,44,56)(39,72,45,66)(40,52,46,58)(41,62,47,68)(42,54,48,60)(74,85,80,91)(76,87,82,93)(78,89,84,95), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,14,19,20)(15,24,21,18)(16,17,22,23)(25,93,31,87)(26,86,32,92)(27,91,33,85)(28,96,34,90)(29,89,35,95)(30,94,36,88)(37,42,43,48)(38,47,44,41)(39,40,45,46)(49,69,55,63)(50,62,56,68)(51,67,57,61)(52,72,58,66)(53,65,59,71)(54,70,60,64)(73,78,79,84)(74,83,80,77)(75,76,81,82)>;

G:=Group( (1,23,43,73)(2,18,44,80)(3,13,45,75)(4,20,46,82)(5,15,47,77)(6,22,48,84)(7,17,37,79)(8,24,38,74)(9,19,39,81)(10,14,40,76)(11,21,41,83)(12,16,42,78)(25,51,92,66)(26,58,93,61)(27,53,94,68)(28,60,95,63)(29,55,96,70)(30,50,85,65)(31,57,86,72)(32,52,87,67)(33,59,88,62)(34,54,89,69)(35,49,90,64)(36,56,91,71), (1,49,7,55)(2,71,8,65)(3,51,9,57)(4,61,10,67)(5,53,11,59)(6,63,12,69)(13,92,19,86)(14,32,20,26)(15,94,21,88)(16,34,22,28)(17,96,23,90)(18,36,24,30)(25,81,31,75)(27,83,33,77)(29,73,35,79)(37,70,43,64)(38,50,44,56)(39,72,45,66)(40,52,46,58)(41,62,47,68)(42,54,48,60)(74,85,80,91)(76,87,82,93)(78,89,84,95), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,14,19,20)(15,24,21,18)(16,17,22,23)(25,93,31,87)(26,86,32,92)(27,91,33,85)(28,96,34,90)(29,89,35,95)(30,94,36,88)(37,42,43,48)(38,47,44,41)(39,40,45,46)(49,69,55,63)(50,62,56,68)(51,67,57,61)(52,72,58,66)(53,65,59,71)(54,70,60,64)(73,78,79,84)(74,83,80,77)(75,76,81,82) );

G=PermutationGroup([[(1,23,43,73),(2,18,44,80),(3,13,45,75),(4,20,46,82),(5,15,47,77),(6,22,48,84),(7,17,37,79),(8,24,38,74),(9,19,39,81),(10,14,40,76),(11,21,41,83),(12,16,42,78),(25,51,92,66),(26,58,93,61),(27,53,94,68),(28,60,95,63),(29,55,96,70),(30,50,85,65),(31,57,86,72),(32,52,87,67),(33,59,88,62),(34,54,89,69),(35,49,90,64),(36,56,91,71)], [(1,49,7,55),(2,71,8,65),(3,51,9,57),(4,61,10,67),(5,53,11,59),(6,63,12,69),(13,92,19,86),(14,32,20,26),(15,94,21,88),(16,34,22,28),(17,96,23,90),(18,36,24,30),(25,81,31,75),(27,83,33,77),(29,73,35,79),(37,70,43,64),(38,50,44,56),(39,72,45,66),(40,52,46,58),(41,62,47,68),(42,54,48,60),(74,85,80,91),(76,87,82,93),(78,89,84,95)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,14,19,20),(15,24,21,18),(16,17,22,23),(25,93,31,87),(26,86,32,92),(27,91,33,85),(28,96,34,90),(29,89,35,95),(30,94,36,88),(37,42,43,48),(38,47,44,41),(39,40,45,46),(49,69,55,63),(50,62,56,68),(51,67,57,61),(52,72,58,66),(53,65,59,71),(54,70,60,64),(73,78,79,84),(74,83,80,77),(75,76,81,82)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I···4N4O4P4Q4R6A6B6C6D12A···12F12G12H12I
order12222223444444444···44444666612···12121212
size11114662222244446···61212121222284···4888

39 irreducible representations

dim11111111111111222222444
type++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D4C4○D42- 1+4S3×C4○D4Q8○D12
kernelC42.162D6C4×Dic6C422S3C23.16D6Dic3.D4C23.8D6Dic34D4C23.9D6Dic3.Q8C4.Dic6S3×C4⋊C4C4⋊C47S3D6⋊Q8C3×C422C2C422C2C42C22⋊C4C4⋊C4Dic3D6C6C2C2
# reps11111112211111113344142

Matrix representation of C42.162D6 in GL6(𝔽13)

050000
800000
001000
000100
000050
000005
,
010000
1200000
001000
000100
000001
000010
,
500000
080000
000100
0012100
0000120
000001
,
500000
080000
0012100
000100
0000120
0000012

G:=sub<GL(6,GF(13))| [0,8,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C42.162D6 in GAP, Magma, Sage, TeX

C_4^2._{162}D_6
% in TeX

G:=Group("C4^2.162D6");
// GroupNames label

G:=SmallGroup(192,1267);
// by ID

G=gap.SmallGroup(192,1267);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,1571,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽